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a b s t r a c t

Computational multibody system algorithms allow for performing eigenvalue analysis

at different time points during the simulation to study the system stability. The

nonlinear equations of motion are linearized at these time points, and the resulting

linear equations are used to determine the eigenvalues and eigenvectors of the system.

coordinate transformation; and zero eigenvalues are always associated with rigid body

modes, while nonzero eigenvalues are associated with non-rigid body motion. These

results, however, cannot in general be applied to nonlinear multibody systems as

demonstrated in this paper. Different sets of large rotation parameters lead to different

forms of the nonlinear and linearized equations of motion, making it necessary to have a

correct interpretation of the obtained eigenvalue solution. As shown in this investiga-

tion, the frequencies associated with different sets of orientation parameters can differ

significantly, and rigid body motion can be associated with non-zero oscillation

frequencies, depending on the coordinates used. In order to demonstrate this fact, the

multibody system motion equations associated with the system degrees of freedom are

presented and linearized. The resulting linear equations are used to define an eigevalue

problem using the state space representation in order to account for general damping

that characterizes multibody system applications. In order to demonstrate the

significant differences between the eigenvalue solutions associated with two different

sets of orientation parameters, a simple rotating disk example is considered in this

study. The equations of motion of this simple example are formulated using Euler

angles, Euler parameters and Rodriguez parameters. The results presented in this study

demonstrate that the frequencies obtained using computational multibody system

algorithms should not in general be interpreted as the system natural frequencies, but

as the frequencies of the oscillations of the coordinates used to describe the motion of

the system.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the linear theory of vibration, the system stability is examined using the eigenvalues that remain constant with time
since the mass, damping and stiffness matrices are assumed to be constant [1–3]. Negative real parts of the eigenvalues are
associated with stable modes, positive real parts are associated with unstable modes, and zero real parts are associated
with modes that exhibit sustained oscillations. One mode with an eigenvalue that has a positive real part is sufficient to
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render the system unstable. In the case of a general damping matrix, a state space representation is often used to solve for
the system eigenvalues and eigenvectors. In the case of linear systems, one can show that a constant coordinate
transformation does not lead to a change in the eigenvalues, and as a consequence, conclusions on the stability and nature
of oscillations obtained using one set of coordinates apply also when other sets of coordinates are used. Furthermore, in the
case of linear systems, zero eigenvalues are always associated with rigid body modes; and nonzero eigenvalues are
associated with non-rigid body motion.

In the case of nonlinear systems where the mass, damping, and/or the stiffness matrices do not remain constant; the
eigenvalues and eigenvectors become configuration dependent and vary with time. The stability of nonlinear systems is
often examined by linearizing the governing dynamic equations of motion at different system configurations. The resulting
linearized equations are used to formulate a linear problem that can be solved for the eigenvalues and eigenvectors. The
eigenvalues can be used to examine the system stability at the configurations at which the nonlinear equations are
linearized. Frequencies of oscillations as well as damping ratios can be extracted from the solution of the eigenvalue
problem in a straight forward manner. Unlike linear systems, as will be demonstrated in this paper, the eigenvalue solution
depends on the set of coordinates used. Furthermore, rigid body motion can lead to non-zero eigenvalues, depending on
the set of coordinates used. For this reason, the definition of the natural frequencies and interpretation of the eigenvalue
solution of nonlinear systems is not as simple as in the case of linear systems. This issue is of particular significance in the
study of the highly nonlinear multibody system applications.

The dynamics of multibody systems is governed by a system of differential and algebraic equations (DAEs). The
differential equations represent the equations of motion of the system, while the nonlinear algebraic equations represent
the kinematic constraints imposed on the motion of the system. General multibody system algorithms implemented in
general purpose computer programs are designed to satisfy the constraint equations at the position, velocity, and
acceleration levels. In order to solve for the eigenvalues and eigenvectors of the multibody system at different simulation
time points, the constraint forces can be eliminated by writing the system accelerations in terms of the independent
accelerations using a velocity transformation [4–8]. By eliminating the constraint forces, one obtains a minimum set of
equations of motion associated with the system degrees of freedom. These equations can be linearized at different
configurations in order to obtain a system of linear equations that can be used to formulate the eigenvalue problem. In
order to account for the general damping matrix that characterizes most multibody system applications, the eigenvalue
problem is formulated in multibody system algorithms using the state space approach.

In the multibody system applications, as previously mentioned, it is important to have a correct interpretation of the
results of the eigenvalue solution. Different multibody system formulations employ different sets of orientation
parameters. Some formulations employ Euler angles to describe the orientation of the body reference in space. In order to
avoid the singularity problems associated with the use of the three Euler angles, some other multibody system
formulations employ the four Euler parameters to describe the orientation of the body reference. The four Euler parameters
are related by one nonlinear kinematic constraint equation that must be adjoined to the system equations of motion as an
algebraic constraint equation. This constraint equation must be satisfied at the position, velocity and acceleration levels.

The purpose of this investigation is to demonstrate the significant difference between the eigenvalue solutions obtained
when different sets of rotation parameters are used to describe the orientation of the body reference in space. In particular,
the most widely used Euler angles and Euler parameters are employed in this investigation. Euler parameters are bounded,
and therefore, simple free rotations that represent rigid body modes do not lead to zero frequency modes as in the case of
Euler angles that can increase linearly if the system is torque free. For this reason, many of the concepts and conclusions
drawn from the analysis of linear systems cannot be generalized and used in the case of nonlinear multibody systems. This
problem is particularly important when comparing the vibration and stability results obtained using two different
multibody system codes that employ the same reference frames but use different sets of parameters to define the
orientations of these frames. The two computer codes can yield the same dynamics results and define the correct state of
the system. The eigenvalue solutions obtained using the two codes, on the other hand, may look significantly different
despite the fact that both solutions are correct and are associated with a correct system configuration. This paper addresses
this important issue and explains the source of the differences between two eigenvalue solutions obtained using two
different sets of orientation parameters that describe the motion of the same frame of reference. The paper also shows that
the eigenvalues associated with rigid body modes can depend on the system initial conditions when a set of orientation
parameters is used. For this reason, one should be careful in interpreting these eigenvalues as the system natural
frequencies.

2. Background

In the case of linear vibration, the equations of motion of a mechanical system can be written in the following
form [1,2]:

Mq €qþKqq¼Q q (1)

In this equation, q is the vector of system coordinates; Mq and Kq are, respectively, the constant symmetric system mass
and stiffness matrices associated with the coordinates q; and Qq is the vector of generalized forces associated with q. The
vector of generalized forces Qq is assumed to be independent of the coordinates and velocities, and therefore, such a vector
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does not contribute to the system stiffness or damping forces. Assume that the n-dimensional vector of coordinates q is
related to another set of n coordinates p using the following linear relationships:

q¼ Bqpp; _q ¼ Bqp _p; €q ¼ Bqp €p (2)

In this equation, it is assumed that Bqp is a constant, square, and nonsingular velocity transformation matrix. Substituting
Eq. (2) in Eq. (1), and pre-multiplying by the transpose of the velocity transformation matrix Bqp, one obtains

Mp €pþKpp¼Q p (3)

In this equation, Mp and Kp are, respectively, the system mass and stiffness matrices associated with the coordinates p;
and Qp is the vector of generalized forces associated with p; they are defined as follows:

Mp ¼ BT
qpMqBqp; Kp ¼ BT

qpKqBqp; Q p ¼ BT
qpQ q (4)

In the case of free vibrations, Eq. (1) leads to the following generalized eigenvalue problem:

ðKq�o2
qMqÞYq ¼ 0 (5)

where o2
q is the eigenvalue (square of the natural frequency), and Yq is the associated eigenvector. The eigenvalue problem

associated with the free vibration of Eq. (3) is

ðKp�o2
pMpÞYp ¼ 0 (6)

One can verify using Eq. (2) that

o2
q ¼o

2
p ; Yq ¼ BqpYp (7)

Eq. (7) demonstrates that the use of a linear coordinate transformation does not change the system eigenvalues, and the
new eigenvectors are a linear combination of the original eigenvectors, as it is known in linear algebra. That is, the choice of
coordinates does not affect the eigenvalues in the case of linear vibration problems. Furthermore, regardless of the set of
coordinates used, a zero eigenvalue is always associated with a rigid body mode; while a non-zero eigenvalue is associated
with a non-rigid body motion.

3. Nonlinear large rotation problems

Most general multibody system computer codes allow for using a systematic procedure to linearize the highly nonlinear
constrained differential equations of motion about nominal configurations at different time points specified by the user of
the code. Quite often the eigenvalue results are used to study the system stability. Multibody system algorithms are
designed to solve differential and algebraic equations (DAEs). The differential equations represent the equations of motion,
while the algebraic equations represent the joint and specified trajectory constraints imposed on the motion of the system.
Most general purpose multibody computer programs employ the technique of Lagrange multipliers to define the constraint
forces. One method that can be used to solve the eigenvalue problem of the constrained multibody system at the time
requested by the user of the code is to use the embedding technique at this point in time to eliminate the algebraic
constraint equations and the associated Lagrange multipliers. This allows for writing the equations of motion in terms of
the system degrees of freedom or independent coordinates qi. In this case, the equations of motion of the system can be
written as [4–8]

MiðqiÞ €qi ¼Q iðqi; _q i; tÞ (8)

In this equation, Mi and Qi are, respectively, the nonlinear mass matrix and generalized force vector associated with the
system degrees of freedom qi. In general, Eq. (8) is a highly nonlinear matrix equation with a dense mass matrix. The source
of nonlinearity in the preceding equation is due to the finite reference rotation, gyroscopic, Coriolis and contact forces,
nonlinear spring, damping, and actuator coefficients, etc. In order to solve the eigenvalue problem at a certain nominal
configuration that corresponds to a certain time point, a linear form of the preceding equation is obtained [7]. Quite often,
the following form of the linearized free vibration equations of motion is used:

Mi €q iþCi _q iþKiqi ¼ 0 (9)

In this equation, Mi is assumed to be known at the given configuration, Ci and Ki are damping and stiffness matrices
defined, respectively, as

Ci ¼�
@Q i

@ _qi

; Ki ¼�
@Q i

@qi

(10)

In the case of general damping matrix, the state space formulation can be used to determine the eigenvalues and
eigenvectors of the multibody system. In this more general case, some of the eigenvalues and eigenvectors can be complex
conjugates. Since the coordinates are real, a procedure for defining real mode shapes can be used as described in the
literature.

The general procedure described in this section is used in this investigation to obtain the numerical results presented in
Section 7 for a simple rotating system. Euler parameters are used to describe the orientation of the rotating body, and the
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kinematic constraints imposed on the motion of the system are introduced using nonlinear algebraic equations that are
satisfied at the position, velocity, and acceleration levels. At the time specified to solve the eigenvalue problem, the
embedding technique is used to eliminate the constraint equations and obtain a minimum set of differential equations.
These equations, as described in this section, are linearized and used to define the eigenvalue problem that is solved for the
system eigenvalues and eigen vectors.

4. Large rotations

Different sets of rotation parameters can be used to define the orientation of a rigid frame of reference in space. Among
these sets are the three Euler angles and the four Euler parameters. Euler parameters are often used to avoid the singularity
problem associated with the use of three parameter representations. The four Euler parameters, however, are related by
one algebraic equation that must be introduced to the dynamic formulation as a kinematic constraint equation. This
equation must be satisfied at the position, velocity and acceleration levels, as previously mentioned. In the following
developments, body axes represent the axes of a rigid frame of reference whose origin is rigidly attached to the moving
body or object. In the case of rigid body dynamics, a centrodial body coordinate system is used.

4.1. Euler angles

There are different sequences of Euler angles that can be found in the literature. In this investigation, a sequence that is
widely used in vehicle dynamics is employed as an example [9]. The sequence consists of a rotation c (yaw) about the body
Z axis, followed by a rotation f (roll) about the body X axis, followed by a rotation y (pitch) about the body Y axis. This
sequence leads to the following transformation matrix:

Aa ¼

cosc cosy�sinc sinf siny �sinc cosf cosc sinyþsinc sinf cosy
sinc cosyþcosc sinf siny cosc cosf sinc siny�cosc sinf cosy

�cosfi siny sinf cosf cosy

2
64

3
75 (11)

The rotation about the Y axis is selected the third in the sequence used in this investigation because in many vehicle
applications including railroad vehicles, the yaw and roll are small angles, while the pitch (rotation of the wheels) increases
with time. By selecting the pitch rotation to be the third in the sequence, the Euler angles’ singularities can be avoided
when the yaw and roll are small.

The absolute angular velocity vectors defined in the global and the body coordinate systems can be expressed,
respectively, in terms of the derivatives of Euler angles as

x¼Ga
_h; x ¼Ga

_h (12)

In this equation, h¼ ½c f y�T , and

Ga ¼

0 cosc �sinc cosf
0 sinc cosc cosf
1 0 sinf

2
64

3
75; Ga ¼

�cosf siny cosy 0

sinf 0 1

cosf cosy siny 0

2
64

3
75 (13)

The absolute angular acceleration vectors defined in the global and body coordinate systems are given, respectively,
in the case of Euler angles as

a¼Ga
€hþ _Ga

_h; a ¼Ga
€hþ _G a

_h (14)

Note that when Euler angles are used, the angular acceleration vectors contain terms which are quadratic in the time
derivatives of the angles.

4.2. Euler parameters

The four Euler parameters are used in multibody system algorithms in order to avoid the singularities associated
with the three parameter representations. The four Euler parameters are denoted in this investigation as b0, b1, b2, and b3.
The four Euler parameters are related by the constraint equation [5,6,8]

b2
0þb

2
1þb

2
2þb

2
3 ¼ 1 (15)

The transformation matrix expressed in terms of these parameters is defined as

Ap ¼

1�2b2
2�2b2

3 2ðb1b2�b0b3Þ 2ðb1b3þb0b2Þ

2ðb1b2þb0b3Þ 1�2b2
1�2b2

3 2ðb2b3�b0b1Þ

2ðb1b3�b0b2Þ 2ðb2b3þb0b1Þ 1�2b2
1�2b2

2

2
664

3
775 (16)
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Note that the degree of nonlinearity of this transformation matrix is much less than that of the matrix Aa obtained
previously using Euler angles. The transformation matrix Ap does not contain explicitly trigonometric functions which are
of infinite order.

The absolute angular velocity vectors defined in the global and body coordinate systems can be expressed in the forms
of Eq. (12) as

x¼Gp
_b; x ¼Gp

_b (17)

In this equation, b¼ ½b0 b1 b2 b3�
T , and

Gp ¼ 2

�b1 b0 �b3 b2

�b2 b3 b0 �b1

�b3 �b2 b1 b0

2
64

3
75; Gp ¼ 2

�b1 b0 b3 �b2

�b2 �b3 b0 b1

�b3 b2 �b1 b0

2
64

3
75 (18)

The angular acceleration vectors defined in the global and body coordinate systems can be written, respectively, in terms of
the derivatives of Euler parameters as

a¼Gp
€b; a ¼Gp

€b (19)

Note that these expressions of the angular accelerations do not contain terms that are quadratic in the velocities since
_Gp
_b ¼ _G p

_b ¼ 0.

5. Large rotation rigid body modes

In the case of nonlinear large rotation problems, rigid body motion is not always associated with zero frequency. The
natural frequency of oscillations depends on the set of orientation parameters used. For this reason, it is important to
recognize that the natural frequencies should not be interpreted as the system natural frequencies, but as the natural
frequencies of oscillations of the coordinates used to describe the motion of the system. Different coordinates lead to
different forms of the equations of motion and to different forms of the linearized equations used to solve the eigenvalue
problem. This fact is demonstrated in this section using a simple one degree of freedom example. The equation of motion of
the system is formulated using Euler angles and Euler parameters. The three-dimensional Newton–Euler equations, which
are expressed in terms of the angular velocity and acceleration vectors, can be used as the starting point in the formulation
of the equation of motion of the simple system.

5.1. Newton–Euler equations

The Newton–Euler equations that govern the motion of a rigid body in space is given by [4–7]

mI 0

0 Iyy

" #
€R

a

" #
¼

Fe

Me�x � ðIyyxÞ

" #
(20)

where m is the mass of the rigid body, R is the vector that describes the translation of the body reference, I is a 3�3
identity matrix, Iyy is the inertia tensor defined with respect to the centroidal body coordinate system, Fe is the resultant of
the external forces, and Me is the resultant of the external moments defined in the body coordinate system. In the case of
pure rotational motion, €R ¼ 0. In this special case, the preceding equation reduces to Euler equation given by

Iyya ¼Me�x � ðIyyxÞ (21)

This equation can be further simplified in the case of a rotation about a single axis. In the case of a rotation about a
single axis, the gyroscopic forces are equal to zero. In the remainder of this section, the rotation about the body Y axis is
considered. In this section, Euler angles and Euler parameters are considered. In the following section, the linearized
equation is also derived using Rodriguez parameters in order to demonstrate the effect of the choice of the orientation
parameters on the form of the linearized equations.

5.2. Linearized Euler angle equations

In the case of a single rotation about the body Y axis ðc¼f¼ 0Þ, one can show that the angular velocity vector x
and angular acceleration vector a defined in the body coordinate system can be written using Eqs. (12) and (14),
respectively, as

x ¼ Gar
_y; a ¼Gar

€y (22)

where Gar is a column vector defined as Gar ¼ ½0 1 0�T . Substituting Eq. (22) in Eq. (21) and pre-multiplying by the
transpose of the velocity transformation matrix Gar , one obtains the familiar single rotational equation that governs the
planar motion of the single degree of freedom system as

Iyy
€y ¼ GT

arMe (23)
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In this equation, Iyy is the mass moment of inertia about the body Y axis. If Me is assumed to be zero (torque free) or if it
does not depend on the coordinates or velocities, then it will not contribute to the stiffness or damping when the equation
of motion is linearized. Using this assumption, one can show that the linearized equation in the case of Euler angles is given
as Iyy

€y ¼ 0: This equation has zero damping and stiffness coefficients and has one zero eigenvalue that corresponds to a
rigid body mode associated with motion of the body about its axis of rotation. This eigenvalue solution is the expected
results of a disk rotating freely about its axis of rotation. For given initial conditions yðt¼ 0Þ ¼ y0 and _yðt¼ 0Þ ¼ _y0, where t

is time, y in the case of a torque free motion increases linearly according to the equation y¼ y0þ
_y0t. That is, there is no

bound on the angle of rotation y. This simple example shows that the rigid body mode is associated with a zero eigenvalue
when Euler angles are used to formulate the dynamic equations of motion of the system.
5.3. Linearized Euler parameter equations

Recall that Euler parameters can be written in terms of the components of the axis of rotation v¼ ½v1 v2 v3�
T , and the

angle of rotation y as [5,8]

b0 ¼ cos
y
2
; b1 ¼ v1 sin

y
2
; b2 ¼ v2 sin

y
2
; b3 ¼ v3 sin

y
2

(24)

In the case of a simple rotation about the body Y axis, b1=b3=0. In this case, the Euler parameters constraint of Eq. (15)
reduces to b2

0þb
2
2 ¼ 1. Using this constraint equation, one can write b0 and its derivatives in terms of b2 as

b0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

2

q
; _b0 ¼�

b2
_b2ffiffiffiffiffiffiffiffiffiffiffiffi

1�b2
2

q ;

@b0

@b2

¼�
b2ffiffiffiffiffiffiffiffiffiffiffiffi
1�b2

2

q ; €b0 ¼�
b2
€b2ffiffiffiffiffiffiffiffiffiffiffiffi

1�b2
2

q þgb

9>>>>>=
>>>>>;

(25)

In this equation, gb ¼�ð _b
2

0þ
_b

2

2Þ=b0. Using the results of Eq. (25), one can write Euler parameters accelerations in terms
of the independent Euler parameter acceleration €b2 as

€b ¼ Bpr
€b2þcb (26)

In this equation, Bpr and cb are column vectors defined as

Bpr ¼ ½�ðb2=b0Þ 0 1 0Þ�T ; cb ¼ ½gb 0 0 0�T (27)

Using Eqs. (17), (19), (20), and (26); one can show that the equation of motion of the single degree of freedom system
expressed in terms of Euler parameters is given by

€b2þð
_b

2

0þ
_b

2

2Þb2 ¼ 0 (28)

The following comments apply to Eq. (28):
1.
 Since Euler parameters are bounded, the equation of motion of a freely rotating body must include positive stiffness
and/or damping coefficients in order to ensure that the maximum values of Euler parameters do not exceed one. For this
reason, the form of Eq. (28) is significantly different from the form of the same equation expressed in terms of Euler
angles.
2.
 By using the definitions of Euler parameters given by Eq. (24), one can show that Eq. (28) reduces to the same equation
€y ¼ 0 obtained when Euler angles are used. Therefore, the dynamics defined by the two equations are in principle the
same despite the fact that the two equations have significantly different forms.
3.
 If the angular velocity remains constant, one can show that the coefficient ð _b
2

0þ
_b

2

2Þ of b2 in Eq. (28) remains constant.

Using the definition of Euler parameters, it is clear that _b
2

0þ
_b

2

2 ¼ ð
_y

2
=4Þðsin2 yþcos2 yÞ ¼ _y

2
=4: If the angular velocity

varies with time, the coefficient ð _b
2

0þ
_b

2

2Þ will not remain constant and will vary with time.
4.
 Euler parameter b0 can be systematically eliminated from Eq. (28) by using the results of Eq. (25), leading to another

form of the equation of motion expressed in terms of the degree of freedom b2. The resulting equation

€b2þð1�b
2
2Þ
�1 _b

2

2b2 ¼ 0 is highly nonlinear.
5.
 While the initial conditions do not affect the rigid body mode when the equations are expressed in terms of Euler
angles, Eq. (28) shows that the initial conditions can have a significant effect on the second term in this equation, and
therefore, the resulting eigenvalue solution strongly depends on the initial conditions as will be demonstrated in this
paper by a numerical example.



ARTICLE IN PRESS

A.A. Shabana / Journal of Sound and Vibration 329 (2010) 3171–3181 3177
In order to obtain the linearized equation, let Qi ¼�ð
_b

2

0þ
_b

2

2Þb2. It follows that the stiffness and damping coefficients

associated with the degree of freedom b2 are given, respectively, by

ki ¼�
@Qi

@b2

¼ ð _b
2

0þ
_b

2

2Þþb2

@ _b
2

0

@b2

¼ _b
2

0þ
_b

2

2þ
2 _b

2

0

b2
0

ci ¼�
@Qi

@ _b2

¼ 2b2
_b2þ2b2

_b0

@ _b0

@ _b2

¼
2b2

b0

ð _b2b0�
_b0b2Þ

9>>>>=
>>>>;

(29)

The linearized equation then takes the form

€b2þci
_b2þkib2 ¼ 0 (30)

It is clear from the preceding two equations that the stiffness and damping coefficients are configuration dependent, and
they also depend on the initial conditions. One can also write the stiffness and damping coefficients ki and ci in terms of the

angle of rotation y as

ki ¼
_y

2

4
1þ2 tan2 y

2

� �
; ci ¼

_y tan
y
2

(31)

Note that in this simple example, _y ¼ 2ð _b2b0�
_b0b2Þ.

Eqs. (29) and (31) show that singularities can be encountered when b0 approaches zero. Multibody system algorithms
are designed to allow for the change of the system degrees of freedom to avoid singularities and ill-conditioned matrices.
In the computer implementation, the numerical properties of the constraint Jacobian matrix are used to determine the
optimum set of independent coordinates or the system degrees of freedom. Therefore, when singularities are encountered
in case b2 is used as the system degree of freedom, the computer code automatically selects b0 as the degree of freedom
and evaluates the stiffness and damping coefficients associated with b0.
6. Rodriguez parameters

Another example of a set of orientation coordinates that can lead to eigenvalue results different from the results
obtained using Euler angles and Euler parameters is the set of Rodriguez parameters. The three Rodriguez parameters,
which are not bounded, are defined in terms of the angle of rotation y and the components of the unit vector
v¼ ½v1 v2 v3�

T as [5,8]

g1 ¼ v1 tan
y
2
; g2 ¼ v2 tan

y
2
; g3 ¼ v3 tan

y
2

(32)

It is clear from this definition that when y=p, singularities are encountered when Rodriguez parameters are used. In
the disk example discussed in this paper, one has g1 ¼ 0; g2 ¼ tanðy=2Þ; g3 ¼ 0. Using the equations of motion €y ¼ 0, and the
Rodriguez parameter identity sec2ðy=2Þ ¼ 1þg2, where g2 ¼ g2

1þg2
2þg2

3 ¼ g2
2 in this example, one can show that the

equation of motion of the disk can be written as

ð1þg2
2Þ €g2 ¼ 2g2

_g2
2 (33)

This equation leads to

d _g2

_g2

¼
2g2

1þg2
2

dg2 (34)

Integrating this equation, one obtains

lnð _g2Þ ¼ lnð1þg2
2Þþ lnðcÞ ¼ lnðcð1þg2

2ÞÞ (35)

In this equation c is the constant of integration. It follows that

_g2 ¼ cð1þg2
2Þ; (36)

which leads to the following integral Z
dg2

ð1þg2
2Þ
¼ c

Z
dt (37)

Using integration tables, one has Z
dg2

ð1þg2
2Þ
¼ tan�1 g2�c1 (38)
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where c1 is a constant. It follows from the preceding two equations that tan�1 g2 ¼ ctþc1 or

g2 ¼ tanðctþc1Þ (39)

It is clear from this equation that the Rodriguez parameter g2 exhibits in this special case of rigid body motion of the
disk a behavior different from Euler angles and Euler parameters.

Using the linearization procedure described previously in this paper, one can show that the linearized equation of
Eq. (33) can be written as

mi €g2þci _g2þkig2 ¼ 0 (40)

The coefficients in this equation are

mi ¼ 1þg2
2; ci ¼�4g2 _g2; ki ¼�2 _g2

2 (41)

Since the coefficient ki in this equation remains negative, while mi is positive, the eigenvalues of this system will always
remain real. The solution, therefore, will be non-oscillatory leading to results which are different from the results obtained
using Euler angles and Euler parameters. It is also clear from the preceding two equations that for a given set of initial
conditions one obtains non-zero eigenvalue associated with rigid body motion of the disk if Rodriguez parameters
are used.

7. Numerical results

The general procedure described in Section 3 is implemented in the general purpose multibody system computer code
SAMS/2000 [7] which is used in this investigation to obtain the numerical results presented in this section for a simple rotating
system. Euler parameters are used to describe the orientation of the rotating body, and the kinematic constraints imposed on
the motion of the system are introduced using nonlinear algebraic equations that are satisfied at the position, velocity, and
acceleration levels. These kinematic equations include the Euler parameter constraint equation defined by Eq. (15). At the time
specified to solve the eigenvalue problem, the embedding technique is used to eliminate the constraint equations and obtain a
minimum set of differential equations. These equations, as described in Section 3, are linearized and used to define the
eigenvalue problem that is solved for the system eigenvalues and eigen vectors. In the case of a single degree of freedom
system, the embedding technique leads to a single differential equation of motion.

A circular disk rotating freely about its axis experiences a rigid body motion. When Euler angles are used, this motion is
governed by the equation €y ¼ 0, which shows that, for a given initial velocity and in the absence of torque, y grows linearly.
When Euler parameters are used, the motion of the same system is governed by the equation €b2þð

_b
2

0þ
_b

2

2Þb2 ¼ 0 (Eq. (28)),
as previously discussed in this paper. Fig. 1 shows the solution of Eq. (28) when the disk is given an initial angular velocity
of 100 rad/s. The results presented in this figure show that b0 and b2 remain bounded and are oscillatory despite the fact
that the disk experiences a rigid body motion. In this study, b0 is obtained from the degree of freedom b2 by using the Euler
parameter constraint. Fig. 2 shows _b0 and _b2 as function of time. The sum of these two derivatives defines the coefficient of
b2 in the equation of motion. Since the system is torque free, the angular velocity of the disk remains constant, and as
previously mentioned in this paper, the coefficient ð _b

2

0þ
_b

2

2Þ remains constant and is equal to ð _y
2
=4Þ ¼ 2500 in this

particular example.
Similar results in the case of an initial angular velocity of 200 rad/s are reported in Figs. 3 and 4. In particular, the results

of Fig. 4 show that the amplitudes of the derivatives increase as compared to the amplitudes of the derivatives presented in
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Table 1
Eigenvalues of the rotating disk.

Time Angular velocity of 100 rad/s Angular velocity of 200 rad/s

Real part Imaginary part Real part Imaginary part

0.000 0.000 50.000 0.000 100.000

0.091 8.191 51.977 33.661 115.745

0.182 16.833 57.877 75.903 165.151

0.273 26.488 67.846 �67.970 154.471

0.364 37.963 82.653 �27.964 111.113

0.455 �47.422 96.084 5.164 100.403

0.546 �33.964 77.212 39.456 121.133

0.637 �23.199 64.167 84.170 176.780

0.728 �13.959 55.537 �60.912 145.381

0.819 �5.521 50.908 �22.657 107.423

0.910 2.617 50.206 10.172 101.546

A.A. Shabana / Journal of Sound and Vibration 329 (2010) 3171–31813180
Fig. 2. In this case of higher initial angular velocity, the stiffness coefficient ð _b
2

0þ
_b

2

2Þ in Eq. (28) becomes significantly larger
and is equal to ð _y

2
=4Þ ¼ 1000. These results indicate that the eigenvalue obtained when using Euler parameters depend on

the configuration as well as the initial conditions. Table 1 shows the real and imaginary parts of the eigenvalues
determined by linearization of Eq. (28) for the two initial angular velocities considered in this section. The results
presented in this table clearly show that the eigenvalue that corresponds to a rigid body motion of the disk is not zero
when Euler parameters are used. Furthermore, the real part of the eigenvalue is not zero and varies with time since Euler
parameters oscillate.

While a simple numerical example is used in this section to demonstrate the dependence of the natural frequency on
the chosen set of parameters that describe the orientations of the bodies in space, the same conclusions apply to more
complex systems such as railroad vehicle systems in which the wheelsets rotate about their own axes. Multibody system
computer codes are often used to study the stability of these complex systems by linearizing the highly nonlinear
equations at different configurations. The eigen solution of the linearized equations is used to draw conclusions about the
system stability. Different railroad vehicle system codes, however, employ different sets of orientation coordinates, and as
a consequence, the eigen solution results obtained using the linearized equations of the railroad vehicle systems must be
carefully analyzed because of their dependence on the set of parameters used to describe the vehicle motion.
8. Summary and conclusions

Computational multibody system algorithms allow for the linearization of the nonlinear system equations of motion at
different time points that correspond to different system configurations. The resulting linear equations are used to
formulate an eigenvalue problem that can be solved for the eigenvalues and eigenvectors. The eigen solution is often used
to shed light on the system stability at different configurations and time points [10–12]. Different multibody system
algorithms, however, employ different sets of rotation parameters that define the orientation of the body reference in
space. The use of different sets of orientation parameters leads to different forms of the dynamic equations of motion. As a
consequence, different multibody system algorithms produce different sets of linear equations for the eigenvalue analysis.
Furthermore, different orientation parameters exhibit different dynamic behaviors. For instance, Euler angles can assume
any values depending on the load and constraints applied to the system; while the absolute values of Euler parameters
cannot exceed one regardless of the forces and constraints applied to the system. As demonstrated in this investigation, the
eigenvalue solution depends on the set of coordinates used to describe the dynamics of the multibody system. In the case
of Euler angles, for example, rigid body motion can be associated with zero eigenvalues; while this may not be the case
when Euler parameters are used. That is, in the case of Euler parameters, rigid body motion is not necessarily associated
with zero eigenvalues. A similar comment applies to Rodriguez parameters as demonstrated in Section 6. For this reason,
the users of general purpose multibody system computer codes must be careful in interpreting the eigenvalue solution
results produced by these codes. The users also must have good knowledge of the set of orientation parameters used by the
codes in order to be able to correctly interpret these results.
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